CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms
نویسندگان
چکیده
Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+) signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3) and CD38-cyclic ADP-ribose (CD38/cADPR) are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.
منابع مشابه
Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca(2+) signaling pathway.
Mobilization of intracellular Ca(2+) stores is involved in many diverse cell functions, including: cell proliferation; differentiation; fertilization; muscle contraction; secretion of neurotransmitters, hormones and enzymes; and lymphocyte activation and proliferation. Cyclic adenosine diphosphate ribose (cADPR) is an endogenous Ca(2+) mobilizing nucleotide present in many cell types and specie...
متن کاملInhibition of Cardiomyocytes Differentiation of Mouse Embryonic Stem Cells by CD38/cADPR/Ca2+ Signaling Pathway*
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca(2+) mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca(2+) in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found tha...
متن کاملNAD(P)H oxidase-dependent intracellular and extracellular O2•- production in coronary arterial myocytes from CD38 knockout mice.
Activation of NAD(P)H oxidase has been reported to produce superoxide (O(2)(•-)) extracellularly as an autocrine/paracrine regulator or intracellularly as a signaling messenger in a variety of mammalian cells. However, it remains unknown how the activity of NAD(P)H oxidase is regulated in arterial myocytes. Recently, CD38-associated ADP-ribosylcyclase has been reported to use an NAD(P)H oxidase...
متن کاملThe role of cyclic-ADP-ribose-signaling pathway in oxytocin-induced Ca2+ transients in human myometrium cells.
Human myometrial contraction plays a fundamental role in labor. Dysfunction of uterine contraction is an important cause of labor progression failure. Although the mechanisms controlling uterine contraction are not completely understood, intracellular Ca2+ mobilization plays an important role during uterine contraction. Several mechanisms of intracellular Ca2+ mobilization are present in smooth...
متن کاملCD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle.
The contractility of airway smooth muscle cells is dependent on dynamic changes in the concentration of intracellular calcium. Signaling molecules such as inositol 1,4,5-trisphosphate and cyclic ADP-ribose play pivotal roles in the control of intracellular calcium concentration. Alterations in the processes involved in the regulation of intracellular calcium concentration contribute to the path...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2018 شماره
صفحات -
تاریخ انتشار 2018